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The Summertop Construction: Crystals in a Corner 
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Equilibrium shapes of crystals in contact with more than one substrate, e.g., 
droplets at a corner or the edge of two planes, are described. This generalizes a 
construction due to Wulff and Winterbottom and, unlike them, allows non- 
convex equilibrium shapes. Since this construction may require a central 
inversion of the Wulff plot, it is dubbed "the summertop construction." 
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1. I N T R O D U C T I O N  

The shape of a macroscopic crystal of a given volume in equilibrium with 
its medium is governed by many factors. A simple model ignors all factors 
that cannot be incorporated into a single function a(n), the energy per unit 
area associated with the crystal-medium interface, expressed as a function 
of the surface normal n. A geometric construction due to Wulff (t) and 
described below gives this equilibrium shape (assuming ~r>0) in the 
absence of external forces such as gravity or interaction with a substrate. 
This Wulff shape W corresponds to a region that has the least possible 
total surface energy compared to all other regions of the same volume. W is 
convex and has positive volume, denoted by I WI, which is a measure (2) of 
the total surface energy of the crystal. In d dimensions, the total energy is 
given by dl W[ 1/d V(d-1)/a, where V is the physical volume of the crystal. W 
is also unique up to translation. 

A Wulff-type construction due to Winterbottom (3) and also described 
below gives W1, the equilibrium shape of the crystal adsorbed on a 
substrate (an isotropic, homogeneous, and flat surface, e.g., table or wall), 
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provided the orientation of the latter is fixed relative to the crystalline axes. 
We specify this or ientat ionby a constant vector nl, which is the exterior 
normal (one pointing into the substrate). The new ingredient here is G1, 
defined as the energy per unit area of the crystal-substrate interface minus 
that of the medium-substrate one. Since a l is a difference, it can be 
negative, for substrates that "prefer" the crystal. If it is sufficiently negative, 
W~ would be of zero volume or empty, leading to the phenomenon called 
complete wetting/4)'4 There the equilibrium shape becomes degenerate, 
spreading out to a microscopically thin film on the substrate. (The film 
might be infinitesimally corrugated rather than smooth.) The total surface 
energy may be zero or infinitely negative. Except for complete wetting, the 
adsorbed crystal is convex, with positive total energy. 

For adsorption in edges and corners defined by two or more flat sub- 
strates, a special case (convex shape associated with a specific ~) has been 
thoroughly studied. (6) In this paper we extend the Winterbottom construc- 
tion to include all crystals, i.e., for a given, arbitrary ~(n). Further, we show 
that novel features can arise when the surface energy differences are 
sufficiently negative. A rich variety of shapes is possible, for example, a 
one-dimensional filament in a dihedral corner; a nonconvex, compact, and 
unique region; or degenerate but compact regions with no specific 
convexity. A familiar example is given by the shapes of water droplets 
attached to various substrates: convex ones on a flat table versus concave 
ones in a capillary tube. Unlike the single-substrate case, finite negative 
total surface energies are allowed, with the consequence of negative 
nucleation barriers/7)'5 

Our construction is similar to that of Winterbottom. However, in the 
negative total surface energy case, we make use of central inversions. 
Therefore, we nickname our construction "summertop." The description 
will be given analytically, but the figures illustrate the construction 
geometrically and carry all the essential information. Proofs and 
mathematical details will be published elsewhere. (8) 

2. THE C O N S T R U C T I O N S  

2.1. Free Crystals and Crystals on a Substrate 

For the sake of completeness and notation, we give a brief summary of 
the Wulff and Winterbottom constructions. 

4 For a recent review see, e.g., Ref. 5. 
5 An ordinary nucleation barrier (for the crystal phase) means  that the medium phase is 

metastable against a potential difference favoring the crystal. "Negative" nucleation barriers 
are not barriers at all, in this sense. Instead, these negative energies can be associated with 
stable configurations when the potential favors the medium. 
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For a flat interface between an ordered (e.g., crystalline) material of 
fixed orientation and a surrounding medium (vapor, melt, or other solids), 
denote the normal pointing into the medium by n. Let the surface energy 
per unit area of such an interface be given by the function ~r(n). Then 
Wulffs construction provides the equilibrium shape W of the crystal 
embedded in the medium. In three-dimensional space ~3, 

W= {x~ N3lx-n~<~r(n) for every n} (l) 

(This construction is valid in any Euclidean space ~d; we use N3 and ~2 for 
ease of visualization and applicability.) In practice, this means that, for 
each direction specified by n, go out a distance a(n) and discard the half- 
space beyond this point perpendicular to n. The shape W is the remainder. 
See Fig. 1. "Equilibrium shape" here means that W has the least possible 
surface energy for the volume it contains. (9) The equilibrium shape for a 
crystal of volume V is obtained by scaling W with the factor VII W[. The 
proof that such a scaled shape is of minimum energy relies on the scale 
invariance of the problem. Finally, we point out that WI, the central inver- 
sion of the Wulff shape (i.e., the image of W under the mapping x ~ - x  for 
each x), is the equilibrium shape of negative crystals, e.g., the crystal with a 
bubble of the medium embedded inside. 
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Fig. 1. An example of the Wulff construction in N2. The boundary of W is the solid line and 
~ is the dashed line. We have chosen an example with no symmetry under central inversion. 
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Winterbottom (3) gave a modification of this construction for a crystal 
that lies in a half-space: R~ = {x Ix .n~ ~<0}. This modification allows one 
to study the phenomenon of crystals adsorbed on a substrate in the 
absence of external forces, e.g., crystals sitting on a table without gravity. 
Set 

W 1 = W ( ~  {xlx - h i  ~< 0" 1 } (2) 

If I Wl[ > 0 (see Fig. 2), the physical equilibrium shape is Wt translated by 
a ln  1 (so that it lies in R~) and scaled by v/IW~l (to satisfy the volume 
constraint). As for the free crystal, [Wll controls the total surface energy 
here. The proof that W~ has least surface energy (for the volume it 
contains) is exactly the same as the proof for W, relying on scale invariance 
again. If I Wxl = 0, the equilibrium shape is degenerate and the crystal 
spreads out over the whole substrate as an infinitesimally thin (possibly 
infinitesimally corrugated) layer. This is known as complete wetting. (4'5) If 
al is sufficiently negative, W1 is empty and complete wetting also occurs, 
with infinite negative total energy. 

2.2. Crystals in a Corner in R 2 

In two dimensions, suppose that the crystal of a given "area" lies in 
the intersection of R 1 and R2,  tWO half-spaces with distinct exterior normals 
nl and n 2. The problem remains scale invariant if we exclude the case 
(nl = -n2)  where two parallel plates at a fixed distance sandwich a crystal. 
A corner is present in the physical region. As in Winterbottom's case, let 
the relative surface energies per unit "length" be given by al and 02. Define 

W12 ~- W 1 (-5 W 2 (3) 

where W2= Wc~ {xlx.na~<a2}. 

nl 

Fig. 2. The Winterbottom construction with a positive al .  Here WI is the shaded region. 
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If IW121 >0,  then W12 is the equilibrium shape, when translated by 
~rlnl + a2n2 and scaled by VII W121. The proof would run along the same 
lines as that for the previous constructions. Although this generalization of 
Winterbottom is straightforward, an interesting new feature may arise: The 
medium may become disconnected, so that the medium intervenes between 
the crystal and the corner (Fig. 3a). 

If I W12I = 0, one of the three following cases holds. 

(a) At least one of the W, is empty or has zero volume. 

(b) Both I Wil > 0, but W~2 is a point. 

(c) Both I Wil >0 ,  but W~2 is empty. 

In case (a), the equilibrium shape is degenerate, with the crystal 
spreading over whichever substrate favors the crystal more. The other sub- 
strate might as well be absent and we have the Winterbottom construction 
again. 

In case (b), we claim that the equilibrium shape is generically a 
triangle in the corner. Since the crystal-medium interface is allowed only 
one normal (the one associated with the single point in W), this is the third 
normal in the triangle. For the atypical case where W has a corner 6 at that 
point, the degeneracy of the two normals in W permits an infinite number 
of equilibrium shapes. Apart from a triangular region using only one 
normal, we may have regions using any appropriate combination of line 
segments with the two normals]  In particular, nonconvex regions and 
limiting cases with infinitesimally corrugated surfaces are also possible. One 
might term this "corner-induced faceting," in analogy with gravity-induced 
faceting/H) The unifying feature of these manifestations is zero total surface 
energy. Unlike the Winterbottom case, vanishing I W121 need not imply 
complete wetting. 

For case (c), e.g., Fig. 3b, we find a nontrivial extension of the Winter- 
bottom construction, since W~2 does not exist. We are able to prove that 
the equilibrium shape is the appropriate translation and scaling of a related 

6 Present physical theories for cr exclude the existence of a corner in W. (1~ Similarly, there are 
difficulties with ridges in three-dimensional W's. Nevertheless, for the sake of mathematical  
completeness and future theories that allow corners, we discuss interesting consequences of 
assuming W's with missing normals.  

7 The varieties of shapes we present here are the solutions to the problem where a given 
functional is minimized. Further,  we have assumed that corners and ridges do not contribute 
additional terms in the functional. Out  of this infinite number  of shapes, one or a few will be 
picked out if entropy is taken into account. Similarly, if corners and ridges contribute 
positively, shapes with only one facet will be favored. 

822/50/3-4-17 
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Fig. 3. Crystals in a corner in N2. (a) Intervening medium in the corner. We are shaded, 
while W12 is represented by the cross-hatch. (b) An example with W~2 empty. We are shaded. 
(c) The summertop construction: W* 2 is shaded. Note that the dashed line is an inverted Wulff 
shape, with WI being the region outside. 
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region, W]~2. To construct it, recall WI, the central inversion of the Wulff 
shape. Then, 

W]~2 = bounded connected component of 

WIc~ { x l x . n ~  - a l  and x.n2~< -a2}  (4) 

See Fig. 3c. Immediately, we recognize a qualitatively different aspect: 
unlike W and the various W1, this equilibrium shape is not convex. This 
counterintuitive picture is related to another novel feature: a finite and 
negative total surface energy, proportional to -IW*211/2. Again, "negative" 
is relative to a system with substrates and medium only. Here, the gain due 
to the interaction with the substrates more than compensates the "toss" due 
to crystal-medium surface. Inversions in several senses occur naturally in 
this construction, hence the title. A heuristic argument may be given for 
W*2: it has all the correct local properties (contact angles, constant 
weighted curvature). Thus, it is stationary. In a later paper, we will present 
a detailed proof that all possible minima have been specified. 

We have discussed only the restricted case where the angle at the 
corner is less than re, by specifying the intersection of two half-spaces. For 
angles greater than ~, the global minimum will always be the crystal 
adsorbed on only one substrate, namely W1 or W2, whichever has smaller 
area. A construction similar to (3) might suggest the union of the W's, 
corresponding to the crystal surrounding a pointed tip. Although this 
shape is stationary, it is not clear whether it is even a local minimum of the 
energy, i.e., a metastable state. On the other hand, experimental 
observations (12) of these shapes lend support to the possibility of 
metastability. We are investigating this issue. 

2.3. Crystals  in a Dihedra l  Ang le  in ~3 

Consider two planar substrates under circumstances like those 
specified in the N2 problem. Following the procedures above, we construct 
W 1, W2, and W12. If [ W121 > 0, or if case (a) holds, there is no qualitative 
difference between the two-dimensional solution and the one here. Unlike 
the above situation (Fig. 3a), the medium will always be connected, even 
when the crystal is not in contact with the corner. A liquid (special case of 
isotropic ~) droplet squeezed between two nearly parallel planes is a 
familiar example. We have also received reports of an experiment with Ru 
crystals adsorbed on oxide surfaces (12) in which such phenomena have been 
observed. 

Qualitative differences do occur for situations like (b) or (c) above. 
Instead of assuming nonconvex shapes, the crystal will spread out as an 
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infinitely long and thin filament in the dihedral corner. Since the crystal 
wets neither substrate completely, it seems appropriate to call this 
phenomenon "corner-induced complete wetting," the isotropic case of 
which was found mathematically and experimentally by Concus and 
Finn.(~3) 

2.4. Crystals in an Interior Corner Formed by 
Three Planes in [~3 

Specify the three substrates by the exterior normals n i and denote the 
relative surface energies by ai ( i=  1, 2, 3). Labeling the half-spaces R~, we 
consider configurations with a corner only, i.e., crystals lying in the octant 
Rx n R2 ~ R3. Define 

W12 3 = W 1 (~ W 2 (-~ W 3 (5)  

where each Wi is as before. If IW123[>0, it determines the unique 
equilibrium shape, for reasons by now familiar. The case of a disconnected 
medium (such as Fig. 3a) is again possible. With 4He crystals, it should be 
easy to observe this phenomenon, where a region of liquid develops in a 
corner spontaneously in the approach to equilibrium. 

If 1W1231 = 0, we have four possibilities: 

(~) At least one of the Wg is empty or has zero volume. 

(fl) 1 I41,.I > 0, but one of the W• is empty or has zero volume. 

(7) I W~I and I Wol > 0, but W123 is a point. 

(6) I W~[ and I Wol > 0, but WI2 3 is empty. 

Case (~) corresponds to complete wetting of the appropriate substrate. 
Case (/~) represents corner-induced complete wetting of a dihedral corner. 
Like the two-dimensional triangular solution, we find a tetrahedron in the 
corner for case (~), with the same possibility of rich variations if W123 is a 
corner or part of an edge in W (see footnotes 4 and 5). For the last case, 
we need a "summertop" construction, in complete analogy with (c) above. 

3. S U M M A R Y  A N D  C O N C L U S I O N  

We have exploited scale invariance to find equilibrium shapes of 
crystals in contact with more than one flat substrate. Typically, we follow 
the lines of Wulff and Winterbottom. For cases where the Winterbottom- 
like construction comes up with an empty set, novel features abound. 
Generic situations include corner-induced complete wetting, where the 
crystal speads out as an infinitely thin line in a dihedral angle, and non- 
convex compact shapes, where central inversion of the Wulff shape is 
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needed. In both cases, the total surface energy is negative, with an impor- 
tant consequence of negative nucleation barriers for physical systems. 
Other new features are more accidental, when the construction results in a 
single point. The crystal may be a triangle (in ~2), a tetrahedron (in ~3), 
or more bizarre. The total energy here is zero. 

The emergence of such a variety of shapes may possibly be traced to 
confinement, an essential difference between the effect of many substrates 
on the crystal and that in a single-substrate case. For  example, there is a 
variety of shapes associated with a water droplet in a capillary (of, say, 
triangular cross section), depending on their relative sizes. However, con- 
finement typically breaks scale invariance, so that Wulff-like constructions 
fail. In the cases we consider, confinement occurs only in angular variables 
and scale invariance is preserved. 

Apart from explicit length scales like the one introduced in the water 
droplet example above, there are more subtle sources in physical systems. 
Thus, our construction, like Winterbottom's, works only for flat, 
homogeneous substrates (or ones where any departure from flatness is con- 
fined to a region so small that it is completely engulfed by the constructed 
region). Only such substrates provide us with scale-invariant boundary 
conditions. Similarly, external forces (e.g., gravity) involve length scales 
and spoil the geometric constructions. 

Finally, we could extend our construction to cases where more planes 
are present, provided all planes go through a point physically and with just 
the correct o i for them to go through a point in the Wulff plot. Such con- 
ditions are imposed so as to preserve scale invariance. Except for some 
special cases (e.g., isotropic cr and identical planes), these circumstances 
would not occur generically in the laboratory. Naturally, it is possible to 
generalize these results to higher dimensional spaces. 
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